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The dielectric response of a glass-forming system (Ag20 : B203: P20~) has been measured in 
the frequency range from 10-a-10 ~ Hz and over temperatures in the range 150-400 K for 
three different compositions. The dynamic behaviour of the conductance and capacitance in 
these glasses has been observed to follow fractional power-law dependencies on frequency 
which obey the generalized Maxwell-Wagner relationships. The power-law dispersions for the 
bulk and the surface layer of the non-ideal solid electrolyte O.6Ag20: xB2Oa: (0.4 - x) P205 
have been modelled mathematically using frequency-dependent resistive and capacitive ele- 
ments in a conventional equivalent network. It is shown that controlled substitution of B203 
in the glassy network influences the response and introduces an imperfect charge transport, 
the quasi-d.c, process of limited charge transport in place of bulk conduction, at higher fre- 
quencies, and affects the diffusion barrier at the electrodes to make them, weakly, more 
conductive at the lowest frequencies. The magnitudes of the activation energies of conduction 
indicate thermally activated localized hopping of silver ions between neighbouring sites in a 
structure that is modified by the addition of boron oxide. 

1. I n t r o d u c t i o n  
Ion-conducting glasses have been extensively studied 
owing to their potential applications as solid electro- 
lytes for solid-state batteries [1-10]. The electrical 
properties of these glasses have been, in the main, 
characterized in terms of a d.c. conductivity and the 
relaxation of that conductivity [1-12]. In practice, the 
measurement of the conductivity and its relaxation 
requires the measurement of the complex capacitance, 
or permittivity, over a wide range of frequencies. The 
complex capacitance, C(co), permittivity, e(c0), suscep- 
tibility, )~(co), and conductivity, (~(co), are related by 

C(o3) = C'(CO) - iC"(co) (la) 

~o[~,(co) _ i~,,(co)] (lb) 
a 

- A~~ ) + e(oo)-/?("(co)] (lc) 

and 

or(co) = COao[{'(co) + i~'(co)] (ld) 

where ao is the absolute permittivity of vacuum, 8.854 
x 10-12 F m-1; e(oo) is the infinite frequency permit- 
tivity, A is the area of each electrode in a plane parallel 
electrode geometry, d the equivalent electrode spacing, 
i = ( - 1 )  1/2 and the capacitance, permittivity, suscep- 
tibility and conductivity are all complex and, in gen- 
eral, dependent on the radian frequency, co. A number 
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of simple theoretical relationships has been proposed 
to deal with the conduction processes taking place in 
glasses [1-12]. These analytical expressions are based 
on non-dispersive conduction models, with the charge 
transport independent of frequency. In the simplest of 
these models, the conductivity process is visualized as 
a series of consecutive and independent hops of ions 
over potential barriers along the direction of the 
electric field [13] and a charge-blocking barrier at 
each electrode. The capacitance and conductance in 
this model are independent of frequency so that the 
sample response can be modelled by a parallel combi- 
nation of a resistance, Rb and a capacitance, Cb, in 
series with the capacitance of the barrier regions, Cp. 
The total impedance of this circuit is given by the sum 
of the impedances of the barrier and the bulk. Using 
the impedance to capacitance transformation 

C(o) = [icoZ(o)]-i  (2a) 

the complex capacitance can be determined as 

C(co) = Cp(1 + icoCbRb) (2b) 
[I + iO3Rb(Cp + Cb)] 

In the particular case when the impedance of the bulk 
is totally real, R b, and that of the barrier is purely 
imaginary, (icoCp)-1, Equation 2b reduces to 

I -- icox 
C(o)) = Cp 1 co2z 2 (3) + 
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with z = RbC p. Equation 3 is the Maxwell-Wagner 
[14, 15] response and is of the Debye relaxation [16] 
form. We note that the Debye form in capacitance 
results from a series connection of resistive and capaci- 
tive elements and that the equivalent Debye form in 
terms of dielectric modulus indicates a parallel 
connection of the same elements. Recently, it has been 
shown [17, 18] that the dielectric response of solids 
and liquids departs significantly from the ideal Debye 
behaviour of Equation 3. Similarly, the perfect 
Maxwell-Wagner behaviour is seldom observed ex- 
perimentally in solids, although it might be expected 
for liquids which contain ionic charge carriers and 
exhibit perfect charge blocking at the electrodes. 

On consideration of experimental results for a wide 
range of materials [17, 18], Hill and Pickup have 
suggested [19-1 that it is possible to construct equival- 
ent networks which represent a range of materials by 
using frequency-dispersive circuit elements. In this 
way one can develop analytical expressions for the 
dielectric response which qualitatively, and quantitat- 
ively, fit the experimentally observed behaviour. In the 
earlier studies [18-20] the dielectric response of ma- 
terials in terms of bulk and surface layers has been 
considered by using a dispersive capacitance, C,, in 
series with an ideal non-dispersive bulk resistance, Ro. 
The dispersive nature of the experimental results re- 
ported here indicate the necessity for a dispersive 
resistance, as well as a dispersive capacitance in the 
equivalent Maxwell-Wagner circuit, a model charac- 
terized by Hill and Pickup [19]. 

The purpose of this work was to explore the validity 
of the expressions for the complex capacitance of a 
dispersive system. The system chosen for the present 
investigation was that of the silver borophosphate 
glasses the electrolytic and electrochromic properties 
of which have been, and are, of interest [10]. A brief 
description of the effects of dispersive capacitive and 
resistive components will be given, followed by an 
outline of the theoretical background of a number of 
dielectric response models. Finally, an analysis of our 
measurements on a set of three glasses measured over 
a range of temperatures is presented. 

2. Dispersive processes 
2.1. Quasi-direct current conduction, 

the Q-d.c. process 
In order to deal with the experimentally observed low- 
frequency dispersive phenomena, a theory of quasi- 
direct current conduction (Q-d.c.) has been developed 
by Dissado and Hill [20] on the basis of many body 
interactions [21] of mobile charges in the bulk of 
materials. The model considers an incomplete trans- 
port of charge through limited paths between the 
electrodes. As the charges are limited from moving 
freely they cause an anomalously large frequency- 
dependent polarization, and hence capacitance, which 
is the essential feature of the Q-d.c. process. Experi- 
mentally, it has been observed that log/log plots of 
capacitance against frequency exhibit parallel traces 
for the real and imaginary components which are 
spaced apart in the constant ratio tan(p~/2) where p is 

less than, but close to unity [18]. This results from a 
fractional power-law response in the susceptibility of 
the form 

z ( m )  = z ' ( m )  - iz"(o~) 

= Z(0) (ira) -p 

= Z(0) (m)-P[cos(p=/2) - isin(prc/2)] (4) 

from which 

C"(m)/C"(m) = tan(pr~/2). (5) 

When C(m) >> C(oo), as occurs at low frequencies, 
Equations 4 and 5 apply directly and the 
Kramers-Kronig relationships are satisfied. The form 
of Equation 5 is in contrast to the Debye response for 
which the comparable relationship to that in Equation 
5 is (cf. Equation 3) 

C"(m)/C'(m) = rex/(1 + mz'c z) (6) 

which tends to mz as m --* 0. 

2.2. Imperfect resistance 
The simplest extension to the Maxwell-Wagner re- 
sponse outlined in Section 1 is to consider that the 
capacitance of the barrier layer, Cp, is frequency dis- 
persive with the form contained in Equations 4, i.e. 
Cp = Co(ira) -p. Such a model has been reported else- 
where [18]. The broader generalization which is likely 
to be suitable for materials in which the bulk charge 
transport of impedance Rb, can be shown to be disper- 
sive [20], is to consider that both Cp and R b are 
dispersive, i.e. Cp = Co(ira) -p and R b = Rb(i0) ) - s  with s 
and p both positive and less than unity. 

2.3. Diffusion-barrier layer 
A capacitive layer arising in the region of the electrode 
due to the accumulation of charges is termed an 
interracial barrier and will have a greater impedance 
than the bulk of the sample. These charged barrier 
layers arise from electrochemical processes which are 
characterized by the dissociation of ionic species. 
Transport through the layers is by diffusion of the 
ionic species back into the bulk of the electrolyte [18]. 
Such diffusive barriers are a special case of the gen- 
eralized relationship of Equations 4 and 5 with p 
= 0.5, the Wagner process, which is well known in 

electrochemistry. From Equation 6 we see that for the 
particular case of a diffusion-dominated barrier 

C"(m)/C'(m) = tan(n/4) = 1 (7) 

so that the log/log traces of the real and  imaginary 
components of the capacitance as a function of Pre- 
quency, degenerate to a single plot of gradient - 0.5. 

3. Response models 
Here we give illustrative examples of the results of 
combining frequency-dependent and independent cir- 
cuit elements in order to show the range of the gen- 
eralized Maxwell-Wagner response. 
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3.1. A Q-d.c. element in series with 
a non-dispersive capacitance 

The impedance of a series-connected combination is 
given by the summation of the individual impedances 

Z(co) = (io)Co)- 1 + (io)C1)n- 1 (8a) 

= [Cl(ico) 1-" + Co(iO))]/[CoCa(ico) 2- ']  

( 8 b )  

From which we have that the admittance is given by 

Y(co) = [CoCl(io)2-"]/[imCo + Cl(ieo) 1-"] (8c) 

and hence 

C(co) = Co/[C 1 + Co(iCo) 1-"] (8d) 

The response contained in Equation 8d is of the 
Davidson-Cole type [22] and is shown in Fig. la. 

3.2. The generalized Maxwell-Wagner model 
with dispersive elements 

For convenience, we use two unit magnitude disper- 
sion functions, Cs = (ira) -~ and Cp = (ie)) -v, so that 
the transition occurs at the frequency co = 1. The 
equivalent circuit and a typical calculated response 
are shown in Fig. lb. With the addition of a constant 

) p 

\ 
z - (b} \ \ - 

o 

/ 
k / j -,:, 
g - I  V SA o \ -  

Co C oc (iO)- 

/ I I 
Log (frequency) 

Figure I Schematic representation of the generalized Maxwell-  
Wagner responses. (a) A fractional power-law dispersive element in 
series with a non-dispersive capacitance. At high frequencies the 
parallel behaviour of the Q-d.c. element dominates but is truncated 
by the constant  capacitance at low frequencies. The response is of 
the form of a Cole-Davidson plot. (b) Generalized Maxwell-  
Wagner plot. The blocking capacitance in (a) is now dispersive with 
exponent - p and as s ~ 1 the imaginary component  of the high- 
frequency element acts as a conductance, whilst the real component  
assumes an exponent of magni tude 2s - p. Note that this exponent 
reverts to a value of 2, the classic Maxwell -Wagner  value, when s is 
unity and p is zero. 
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high-frequency capacitance, Coo, the algebraic solu- 
tions for the real and imaginary components of the 
capacitance are 

mPcos(1/2px) + mScos(1/2src) 
C ' ( m )  = 

o) 2v + + 2mS+Pcos[1/2(p- s)~] 

+ Co~ (9a) 

mPsin(1/2prO + mSsin(1/2szO 
C"(o)) = o2 v + 0)2~ + mV+~cos[1/2( p _ s)n] 

(9b) 

This dielectric response function has been found to be 
identical to that which we have observed in our 
experimental investigation, as we shall show in Sec- 
tion 6. The relationships contained in Equations 9 give 
the correct limiting behaviour as co approaches zero or 
infinity, but the region of principal interest is just 
above co = 1 and can best be explored by means of 
computation. 

4. Experimental procedure 
Three glasses based on the composition 0.60Ag20 
+ x P 2 0  5 + (0.40 - x) B20 3 with x = 0.40, 0.36 and 

0.28, were prepared using a conventional quenching 
technique. X-ray diffraction analysis confirmed the 
amorphous nature of these glasses. To make electrical 
measurements, gold electrodes were evaporated on 
both sides of the pellets in a vacuum of better than 
10 .5 torr (1 torr = 133.322 Pa). The dielectric meas- 
urements were carried out using a Solartron 1255 
Frequency Response Analyser (FRA) coupled to a 
Chelsea Dielectric Interface through an Opus-V PC, a 
Roland DXY-880 plotter and an Oxford DN 1704 
Cryostat with an ITC4 temperature controller. The 
experimental procedure was the same as that reported 
earlier by Anis and co-workers [23, 24]. 

5. Results 
All the experimental data are presented in the form of 
log/log plots of the real, C'(o~), and imaginary, C"(m), 
components of capacitance as functions of the fre- 
quency (Hz) in order to give a clear presentation of the 
fractional power-law behaviour observed. We use ca- 
pacitance as the reported property because the pre- 
sence of barriers in the system does not allow the use 
of a bulk property such as permittivity. Furthermore, 
the capacitance has been measured to a higher degree 
of accuracy than it is possible to determine the ratio 
Aid for the cast samples. Fitting of the experimental 
data to simple circuit networks of a frequency-depend- 
ent capacitance of fractional power law form, a Q-d.c. 
process and a dispersive resistance has been carried 
out making use of a computer program in order to 
obtain rapid fitting of the observed responses. The 
exponent values can be determined to better than 3% 
as indicated in Table I. 

The principal feature of our experimental results is 
the presence of a strong dispersion in the capacitance 
C'(o3) which we attribute to a barrier effect in the 
region of the electrodes and which gives rise to the 



TABLE I The values of the transport exponents 

Glass Temp., Exponent Log[G(co) ] 
composition T (~ 

s 2s - p p 

Glass 1 200 0.93 1.36 0.50 - 9.83 
60% Ag 225 0.94 1.38 0.50 - 7.90 
and 250 0.95 1.38 0.52 - 7.20 
40% P205 270 0.96 1.37 0.53 - 6.60 

290 0.97 1.40 0.54 - 5.90 
304 0.98 1.42 0.54 5.53 
325 0.99 1.45 0.53 - 4.80 
350 0.99 1.46 0.52 - 4.25 
375 0.99 1.49 0.51 - 3.70 
400 1.00 1.50 0.50 

Glass 2 200 0.80 1.i0 0.49 - 8.45 
60% Ag20, 225 0.82 1.15 0.50 - 7.85 
36% P205 250 0.84 1.18 0.50 - 6.95 
and 275 0.86 1.23 0.49 - 5.00 
4% BzO3 304 0.89 1.26 0.52 - 5.25 

320 0.91 1.32 0.50 - 4.85 
340 0.91 1.33 9.49 - 4.35 
360 0.93 134 0.52 - 3.95 
380 0.94 1.34 0.54 - 3.55 
400 0.96 1.37 0.56 - 3.45 

Glass 3 200 . . . .  8.25 
60% Ag20 225 0.80 1.14 0.50 - 7.35 
28% P205 250 0.82 1.16 0.50 - 6.98 
and 275 0.85 1.20 0.50 - 5.70 
12% B203 304 0.88 1.24 0.53 - 4.85 

320 0.91 1'.30 0.53 - 4.55 
340 0.93 1.34 0.52 - 4.20 
360 0.94 1.38 0.50 - 3.95 
380 0.96 1.42 0.52 - 3.70 
400 0.97 1.40 0.54 - 3.45 

generalized Maxwe l l -Wagne r  response, out l ined in 
Section 3.2. and  sketched in Fig. lb.  

As a first example, we present in Fig. 2 the data  for 

the glass of composi t ion  0 .60Ag20 : 0.40 P205,  Glass 
1. In  this figure, the individual  data  sets which were 
ob ta ined  in the temperature  range 270-375  K are 

displaced in magn i tude  by three or four decades, for 
reasons of clarity~ The exponent  of C'(c0) is well defined 
for each data  set and gives values for s, listed in Table  
I, in the range 0.93-1.0. The exponent  2s - p, which 
for C'(eo) in the t ransi t ion region dominates  the fre- 

quency region below 100 Hz, is more variable with 
temperature.  Taking  the lowest frequency asymptot ic  
gradient  gives values in the range 1.3-1.5. These data  

are shown in Fig. 3 together with the low-frequency 
barr ier  exponent ,  p, which has been determined to be 
essentially cons tant  at 0.5. 

The novel feature of these data  is the con t inuous  
temperature  dependence of s over the range up to 
330 K. Above abou t  380 K, s reaches its m a x i m u m  
value of uni ty  and  we observe a non-dispersive con- 
ductance in the sample. In  the region where s is less 
than,  but  close to, unity, charge movemen t  in the glass 

is of the Q-d.c. type. We note  that  because of the 
temperature  dependence of s, these data  cannot  be 
temperature  normalized,  as is commonly  done  with 
dielectric data  [17], because the spectral form of the 
response is not  independent  of temperature.  As the 
frequency exponents  are related to the degree of order 
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Figure 2 Selected spectral data for Glass 1, zero B20 3 content. The 
temperatures of measurement (K), are indicated and each data set 
has been displaced in magnitude for clarity. Here, and in Figs 4 and 
6, C(eo) = C'(c0) - iC"(o3) with (O) C'(o3) ; (Q) C'(o3). 

in the structure [20, 21] their temperature  dependence 
is characteristic of a metastable  structure in this tem- 
perature range. 

Equivalent  spectral plots for Glass 2 are given in 
Fig. 4 and  the analysis of the exponents  in Fig. 5. The 

small bo ron  oxide componen t  appears to give a more 
glassy structure in that  the exponents  have not  reach- 

ed their equi l ibr ium values by 400 K. In  contradis t inc-  
tion, however, the low-frequency exponent ,  p, is reas- 
onably  cons tan t  at 0.5 at the lower temperatures  and  

now increases towards 0.6 for temperatures  in excess 
of 350K.  The rate of change of the t ranspor t  expo- 
nent,  s, is surprisingly cons tant  th roughout  the tem- 

perature range investigated, with no apparent  satura- 
t ion as its m a x i m u m  value of uni ty  is approached.  The 
values of the exponents  are listed in Table  I. 

Figs 6 and 7 present  the equivalent  informat ion  for 
Glass 3 which shows a reasonably cons tant  value for 
the barrier exponent  at 0.5 th roughout  the temper- 

ature range, bu t  with an  indicat ion that  it is increasing 
at the highest temperatures  investigated. The  expo- 
nent  s is little changed from that  observed in Glass 2, 
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Figure 3 Plots of the measured frequency exponents 2s - p and s 
together with the deduced values of p as functions of temperature 
for Glass 1. Note that p is essentially constant  at 0.5 throughout  the 
temperature range, indicative of the presence of a diffusive barrier at 
the electrodes. 
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Figure 4 Selected data sets for Glass 2, which contains 4% B20 3. 

in particular, the rate of change of s with temperature 
has not changed significantly. 

Figs 2, 4 and 6 show the detail of the spectral 
responses. Glasses 2 and 3, particularly at high tern- 
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Figure 5 Plots of the measured and derived exponents for Glass 2. 
In this material p is only constant  at the value of 0.5 for temper- 
atures less than 300 K, and the temperature dependence of the 
exponent, s, is large and constant  in the range investigated. 
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Figure 6 Selected data sets for Glass 3, 12% B203. The data in the 
temperature range above 300 K are similar to those obtained for 
Glass 2 with diffusive behaviour dominat ing at low frequencies. At 
the lowest frequency measured, there is some indication of a barrier 
conductance developing. 

peratures and low frequencies, give clear evidence for 
dispersive barriers which have been deduced from the 
magnitudes of the higher frequency exponents of C' 
and C". In both cases, for measurement temperatures 
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Figure 8 Arrhenius plots of the a.c. conductances of the three 
glasses at 1 Hz. Note the cross-over in the region of T - l =  3. 
(O) Glass 1, (~ )  Glass 2, ( x )  Glass 3. 

T A B L E  II The acitivation energies indicated by the linear regions 
of th e plots 

Glass Activation energy (eV) 

1 0.58 
2 0.35 
3 0.44 

greater than about 300 K, the real and imaginary 
components of the complex capacitance are of almost 
equal magnitude, the dispersion characteristic of a 
perfectly diffusive barrier. 

Arrhenius plots of the a.c. conductance at 1 Hz, the 
lowest limit of the bulk conductance, are given in 
Fig. 8 and the activation energies indicated by the 
linear regions of the plots are listed in Table II. The 
zero boron content glass has the highest activation 
energy of 0.58 eV, whereas the lowest boron concen: 
tration glass has the lowest activation energy and a 
higher conductance. It can be seen that both the boron 
glasses have similar conductance values and hence we 

could deduce that the addition of boron induces easier 
transport in the glassy structure but does not add 
significantly to the density of the carriers. Indeed, we 
note that the infinite temperature conductance of the 
non-boron containing glass would be significantly 
higher than that for those containing boron, and 
hence we can deduce that the density of carriers has to 
be less than in Glass 1, but that the mobilities are 
greater. 

6 .  C o n c l u s i o n  
Three low-conductivity glasses based on a silver 
oxide-phosphorous oxide system to which boron 
oxide has been added have been examined dielec- 
trically in the frequency range 10s-10 -3 Hz as func- 
tions of temperature. It has been observed that all the 
glasses form a charge diffusive layer at the electrodes 
and comparison of the relative magnitudes of the 
barrier capacitance with the high-frequency capaci- 
tance indicates a thickness for the barrier layers that is 
of the order of 10-5 of the sample thickness, i.e. about 
10 rim. 

In the bulk of the glass, the undoped material 
exhibited a welt-defined conductance, s ~ 1.0, at tem- 
peratures in excess of 300 K. In all other cases, the 
bulk charge transport was of the form of a Q-d.c. 
process in which a significant fraction of the mobile 
charge becomes trapped in the structure. It has been 
shown that the series combination of bulk charge 
transport and diffusive barriers gives a generalized 
Maxwell-Wagner response; however, in the case of the 
samples reported here, the barriers are not perfectly 
dispersive and the exponent of the bulk transport is, in 
general, temperature dependent. Hence not only do 
we deduce that the glassy structures are metastable, 
but they develop towards the more ordered form at 
higher temperatures. 

Consideration of the temperature dependencies of 
the a.c. conductance as a function of temperature 
indicates that the density of charge carriers is largest 
for the boron-free glass, but that the mobility of these 
carriers is low due to charge trapping and exhibits a 
relatively high activation energy. Conversely, the 
doped material has lower activation energy for trans- 
port but fewer charge carriers. The formation of the 
diffusive charge barriers would suggest that the car- 
riers are ionic in nature with a low efficiency for charge 
exchange at the electrodes. 

In conclusion, we deduce that the effect of adding 
significant concentrations of B203 to the silver phos- 
phate glass has not changed the basic dielectric re- 
sponse of a bulk conduction process in parallel with a 
constant, bulk, capacitance, the two being in series 
with electrode barrier layers. It has, however, 
strengthened the diffusive nature of the barrier layers 
and decreased the efficiency of charge transport in the 
bulk whilst decreasing its activation energy. From this 
information we deduce that the boron has contributed 
carriers to the system and that these carriers are less 
deeply bound than in the undoped material. We have 
determined, through the dispersive exponent, s, that 
the physical structures of the doped materials are 
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metastable over the temperature range from 
200M00K. As, at the highest temperatures, s is ap- 
proaching its maximum value of unity, we postulate 
that the structures will become regular and stable 
above a temperature of about 425 K. We note that at 
the lowest temperatures, the glass with the higher 
doping, Glass 3, exhibits a decreasing activation en- 
ergy. This can be taken as evidence for impurity 
conduction becoming dominant at low temperatures. 
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